SIGNATURES OF FISSILE MATERIALS: HIGH-ENERGY GAMMA RAYS FOLLOWING FISSION

Eric B. Norman¹, Stanley G. Prussin², Ruth-mary Larimer¹, Howard Shugart², Edgardo Browne¹, Alan R. Smith¹, Richard J. McDonald¹, Heino Nitsche², Puja Gupta², Michael I. Frank³, Thomas B. Gosnell³

The spectral and temporal dependence of beta-delayed gamma rays in the range E > 3.0 MeV from thermal-neutron induced fission are shown to be characteristic signatures of 235 U and 239 Pu. For interrogation of large sea-going cargo containers filled with hydrogenous materials, beta-delayed gamma rays can offer an increase in sensitivity for detection of these materials and other fissile materials by as much as 1000-10000 compared to the detection of beta-delayed neutrons.

Email: prussin@uclink.berkeley.edu

¹ Lawrence Berkeley National Laboratory

² University of California, Berkeley

³ Lawrence Livermore National laboratory